Technical Design of POD

XXX This document is a mere start of draft. It is NOT anywhere CLOSE to complete!

Hope it helps though.

XXX

POD is programmed in PHP using a MySQL relational database as well as the filesystem
to store data. It makes liberal use of Javascript, CSS, frames, and other client-side
browser technologies to create a more dynamic interface than can be done in pure HTML.

POD Architecture

...1sn't the cleanest ever...

data files in
filestore/
and data/

A

4>
MySQL DB
—— Object wrappers
inlib/:

Poll, Document, File...

y

y

PHP pages

inmain/

PHP pages
inmarea/

HTTP GET,
POST requests

A

Y

HTML pages

Browser
(html, javascript, css
interpreter)

A

HTML pages

often with heavy
CSS, Javascript;
and often contained
within a frame



One somewhat unique aspect of POD is that, especially for the meeting area, lots of UI
logic exists not as PHP code, but rather as Javascript embedded through php files. The
client's browser's javascript/dhtml engine actually does more UI work than the server's
php engine, for the meeting area.

It design deficiency that the main/ and marea/ php pages may interact either directly with
the database (by executing SQL queries) or else indirectly through the object wrapper
layer. Consistency through the object wrapper layer would be preferable, but at this early
stage it's often more convenient to directly execute queries from a php page. (For
example, newpoll.php inserts a new poll row in the database directly, instead of creating a
new Poll object than calling an store-in-database method.)



Meeting Areas

The 7-Frame Interface

Navigating to POD_URL ROOT/marea loads frameset.php. The entire meeting area
interface remains in the same downloaded framset the whole time. It lays out the browser
window with 7 frames like this:

name=banner banner.php

name=msglisttoolbar msglisttoolbar.php

name=folioth
foliotb.php

name=msglist

glossary name: discussion index
msglist.php

name=workspace

e CSS: msgs.css.php
glossary name: folio view

workspace.php, which in turn include()'s

view-{index,doc,discoitem,poll}.php name=curmsgtoolbar curmsgtoolbar.php

closepoll.php
ballot-submit.php

edit-preface.php name=curmsg

glossary name: message view
curmsg.php

CSS: ws.css.php

CSS: msgs.css.php

name=blabla is the HTML FRAMESET NAME tag, which is also the javascript
identifier for the frame. The php files listed are the possible files which may appear in
that frame during use.

banner, foliotb, msglisttoolbar and curmsgtoolbar all rarely reload during use. Changes
to their text are accomplished via DHTML routines. (Exception: foliotb must reload to
get an updated navigation listing of the folio items in the meeting area)

msglist.php's highlighting and jumping around, is accomplished through DHTML.
However, all the message headers are written via php; thus, it must reload to show new

messages. msglist.php controls the display in msglisttoolbar via javascript calls.

curmsg.php reloads for every new message. curmsg.php controls the display in



curmsgtoolbar via javascript calls.

workspace reloads for every new view, of the folio index, and of each folio item.

Meeting Area Popups

Popups for the meeting area — for creating new folio items and messages — actually are
framesets with one big frame that does all the actual work. The external frame exists to
provide a javascript object (‘opener') referring back to the original 7-frame frameset
window,even after the main working frame requests new pages, wiping clean its
javascript memory.

Random Notes

All php pages designed to be requested by the user, are one subdirectory below
POD_URL ROOT and POD FILE ROOT. This means, the universal way to get at the

group rootis'. .'



