
Technical Design of POD
XXX This document is a mere start of draft. It is NOT anywhere CLOSE to complete!
Hope it helps though. XXX

POD is programmed in PHP using a MySQL relational database as well as the filesystem
to store data. It makes liberal use of Javascript, CSS, frames, and other client-side
browser technologies to create a more dynamic interface than can be done in pure HTML.

POD Architecture
...isn't the cleanest ever...

MySQL DB

PHP pages
in main/

Browser
(html, javascript, css

interpreter)

data files in
 filestore/

and data/

HTTP GET,
POST requests

HTML pages

Object wrappers
in lib/:

Poll, Document, File...

 PHP pages
in marea/

HTML pages
often with heavy
CSS, Javascript;
and often contained
within a frame

One somewhat unique aspect of POD is that, especially for the meeting area, lots of UI
logic exists not as PHP code, but rather as Javascript embedded through php files. The
client's browser's javascript/dhtml engine actually does more UI work than the server's
php engine, for the meeting area.

It design deficiency that the main/ and marea/ php pages may interact either directly with
the database (by executing SQL queries) or else indirectly through the object wrapper
layer. Consistency through the object wrapper layer would be preferable, but at this early
stage it's often more convenient to directly execute queries from a php page. (For
example, newpoll.php inserts a new poll row in the database directly, instead of creating a
new Poll object than calling an store-in-database method.)

Meeting Areas

The 7-Frame Interface
Navigating to POD_URL_ROOT/marea loads frameset.php. The entire meeting area
interface remains in the same downloaded framset the whole time. It lays out the browser
window with 7 frames like this:

name=blabla is the HTML FRAMESET NAME tag, which is also the javascript
identifier for the frame. The php files listed are the possible files which may appear in
that frame during use.

banner, foliotb, msglisttoolbar and curmsgtoolbar all rarely reload during use. Changes
to their text are accomplished via DHTML routines. (Exception: foliotb must reload to
get an updated navigation listing of the folio items in the meeting area)

msglist.php's highlighting and jumping around, is accomplished through DHTML.
However, all the message headers are written via php; thus, it must reload to show new
messages. msglist.php controls the display in msglisttoolbar via javascript calls.

curmsg.php reloads for every new message. curmsg.php controls the display in

name=banner banner.php

name=foliotb
foliotb.php

name=workspace
glossary name: folio view

workspace.php, which in turn include()'s
view-{index,doc,discoitem,poll}.php

closepoll.php
ballot-submit.php
edit-preface.php

CSS: ws.css.php

name=msglist
glossary name: discussion index

msglist.php

CSS: msgs.css.php

name=msglisttoolbar msglisttoolbar.php

name=curmsgtoolbar curmsgtoolbar.php

name=curmsg
glossary name: message view

curmsg.php

CSS: msgs.css.php

curmsgtoolbar via javascript calls.

workspace reloads for every new view, of the folio index, and of each folio item.

Meeting Area Popups
Popups for the meeting area – for creating new folio items and messages – actually are
framesets with one big frame that does all the actual work. The external frame exists to
provide a javascript object ('opener') referring back to the original 7-frame frameset
window,even after the main working frame requests new pages, wiping clean its
javascript memory.

Random Notes
All php pages designed to be requested by the user, are one subdirectory below
POD_URL_ROOT and POD_FILE_ROOT. This means, the universal way to get at the
group root is '..'

